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Abstract

Maxwell’s equations, which depict classical electromagnetic theory, are pulled apart and brought together
into a modern language of differential geometry. A background of vector fields and differential forms
on a manifold is introduced, as well as the Hodge star operator, which eventually lead to the success
of rewriting Maxwell’s equations in terms of differential forms. In order to appreciate the beauty of
differential forms, we first review these equations in covariant form which are shown afterwards to be
consistent with the differential forms when expressed explicitly in terms of components.
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1. Introduction

1.1 Introduction to Maxwell’s Equations

The revolutionary work of Maxwell, published in 1865 took the individual and seemingly unconnected
phenomena of electricity and magnetism and brought them into a coherent and unified theory. This
unified theory of electricity and magnetism depicts the behaviour of two fields, the electric field E and
the magnetic field B, which depend on the electric charge density ρ and also on the electric current
density J.

Maxwell discussed his ideas in terms of a model in which vacuum was like an elastic solid. He tried
to explain the meaning of his new equation in terms of the mathematical model. There was much
reluctance to accept his theory, first because of the model, and second because there was at first no
experimental justification. Today, we understand better that what counts are the equations themselves
and not the model used to get them [FRS64].

Maxwell’s equations have been generalized to other areas of physical interest. Our picture of the
standard model consists of three forces: electromagnetism and the weak and strong nuclear forces
are all gauge fields (invariant under gauge transformations), which means that they are described by
equations closely modelled after Maxwell’s equations. These equations have been written in different
forms since their discovery. One of the advantages of rewriting Maxwell’s equations is that it allows for
greater generalization to other areas of physical interest.

The language of differential geometry has been an indispensable part of the study of theoretical physics.
The first theory of physics to explicitly use differential geometry was Einstein’s General Relativity, in
which gravity is explained as the curvature of spacetime. The gauge theories of the standard model
are of a very similar geometrical character (although quantized ). But there is also a lot of differential
geometry lurking in Maxwell’s equations, which, after all, were the inspiration for both general relativity
and gauge theory [BP94].

With the fact that the laws of physics must have the same form in all inertial frames, in our new
mathematical language of differential geometry we need to work in a way that is independent of the
choice of coordinates. This chapter will be devoted to the covariant form of Maxwell’s equations.

1.2 Minkowski Spacetime

The geometrical structure of spacetime has a lot of topological structures embedded in it. The topo-
logical property of a space are those that are left unchanged under arbitrary smooth deformations of
the space; topology tells us which points are the same, which are distinct, and which are in what neigh-
bourhood. From experience, an event can be described by stating when (time) and where (space) it
happened. We will suppose that a topology of spacetime is that Euclidean four-dimensional space (R4).
This assumption means that we can describe points in spacetime by using four-dimensional coordinates,
each point corresponding uniquely to the set of numbers (t, x1, x2, x3). It is quite possible that the
topology of spacetime is not Euclidean [Han76].

Relativistic spacetime contains only a single geometry which combines both space and time. As
Minkowski expressed it: “Hence forth space by itself, and time by itself, are doomed to fade away
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Section 1.2. Minkowski Spacetime Page 2

into mere shadows, and only a kind of union of the two will preserve an independent reality”[Han76].

The spacetime coordinates of a point x are denoted by a contravariant vector with four components
xα:

xα = (x0, x1, x2, x3) = (t,x). (1.1)

Throughout this chapter and subsequent chapters, we shall us the “Heaviside Lorentz ” units where
ε0 = µ0 = c = 1 and the Einstein’s summation convention, according to which any repeated index
appearing in a term of an equation is to be summed over. The covariant vector with four components
xβ is given by

xβ = ηαβx
α, (1.2)

where ηαβ is a matrix with components

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.3)

which is called the flat metric tensor or the flat Minkowski metric tensor, α, β = 0, 1, 2, 3. The metric
tensor has the property that when acting on a contravariant index, ηαβ converts the index to a covariant
index and vice versa. So if we invert relation (1.2), we obtain:

xα = ηαβxβ, (1.4)

where ηαβ is the matrix inverse to ηαβ.

Using relation (1.2) and (1.4) one can easily show that

ηαβ = ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.5)

Thus,
ηαβηαγ = δβγ , (1.6)

where

δβγ =

{
1 if γ = β,

0 if γ 6= β.
(1.7)

Therefore, the position vector can be written either in the contravariant or in the covariant form.

The relativistically invariant spacetime distance element

ds2 = (dx1)2 + (dx2)2 + (dx3)2 − dt2, (1.8)

can be written as

ds2 = ηαβdx
αdxβ = dxβdxβ. (1.9)
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We can also define a covariant derivative in spacetime ∂α as:

∂

∂xα
:= ∂α = (∂0, ∂1, ∂2, ∂3) = ηαβ∂

β, (1.10)

which can be inverted by the use of (1.6) as

∂

∂xβ
:= ∂β = ηβα∂α. (1.11)

Generally, for any arbitrary contravariant vector Cα, we define a covariant component Cβ by

Cβ = ηβαC
α, (1.12)

which gives
Cα = ηαβCβ, (1.13)

on inversion.

1.3 Covariant Form of Maxwell’s Equations

Maxwell’s equations can be cast into covariant form. As Einstein expressed it: “The general laws of
nature are to be expressed by equations which holds good for all systems of coordinates, that is are
covariant with respect to any substitution whatever (generally covariant)” [BP94].

Maxwell’s theory of electromagnetism is, alongside with Einstein’s theory of gravitation, one of the most
beautiful of classical field theories. Having chosen units in which µ0 = ε0 = c = 1, Maxwell’s equations
then take the form:

∇ ·E = ρ (1.14)

∇×B− ∂E
∂t

= J (1.15)

∇ ·B = 0 (1.16)

∇×E +
∂B
∂t

= 0 (1.17)

where E and B are the electric and magnetic fields, ρ and J are the charge and current densities.

Taking the divergence of equation (1.14) and substituting equation (1.15) into the resulting equation,
we obtain the continuity equation

∇ · J +
∂ρ

∂t
= 0. (1.18)

Note that we have used the fact that for any vector H and scalar Ψ, the following identities hold:

∇ · (∇×H) = 0 (1.19)

∇× (∇Ψ) = 0. (1.20)
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Also, since equation (1.16) always holds, this means that B must be a curl of a vector function, namely
the vector potential A:

B = ∇×A. (1.21)

Substituting equation (1.21) into equation (1.17), we obtain

∇×
(
E +

∂A
∂t

)
= 0, (1.22)

which means that the quantity with vanishing curl in equation (1.22) can be written as the gradient of
a scalar function, namely the scalar potential Φ:

E = −∇Φ− ∂A
∂t

. (1.23)

The minus sign attached to the gradient is for technical convenience.

These Maxwell’s equations can be written in covariant form by introducing the four-vector potential Aα

and the electric current four-vector potential Jα defined by:

Aα =
(
Φ, A1, A2, A3

)
=
(
A0, A1, A2, A3

)
(1.24)

Jα =
(
ρ, J1, J2, J3

)
=
(
J0, J1, J2, J3

)
. (1.25)

Equations (1.21) and (1.23) can then be written out explicitly in component form, for example

B2 =
∂A1

∂x3
− ∂A3

∂x1
=
∂A1

∂x3
− ∂A3

∂x1
= ∂3A1 − ∂1A3 (1.26)

E1 = −∂A
0

∂x1
− ∂A1

∂x0
=
∂A1

∂x0
− ∂A0

∂x1
= ∂0A1 − ∂1A0. (1.27)

It is evident that the E and B fields are element of the second-rank, antisymmetric, contravariant
field-strength tensor Fµν defined by

Fαβ = ∂αAβ − ∂βAα. (1.28)

Explicitly, the field-strength is

Fαβ =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 , (1.29)

where α corresponds to the rows and β corresponds to the column. The components of the fields in
equations (1.21) and (1.23) can be easily identified as

Ei = F 0i, (1.30)

Bi =
1
2
εijkF jk, i, j, k = 1, 2, 3, (1.31)
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where the Levi-Civita symbol εijk =


+1 if (i, j, k) = (1, 2, 3), (3, 1, 2), (2, 3, 1),
−1 if (i, j, k) = (1, 3, 2), (3, 2, 1), (2, 1, 3),
0 otherwise.

(1.32)

It is very easy to show that the covariant field tensor defined by

Fαβ = ∂αAβ − ∂βAα, (1.33)

has components

Fαβ = ηαγηβλF
γλ =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (1.34)

The homogeneous Maxwell’s equations (1.16) and (1.17) correspond to the Jacobi identities:

∂γFαβ + ∂αF βγ + ∂βF γα = 0, (1.35)

where α, β, γ are any of the three integers 0, 1, 2, 3. For instance, if γ = 1, α = 2, β = 3 we have from
equations (1.29) and (1.35),

∂1F 32 + ∂2F 13 + ∂3F 21 = −
(
∂1B1 + ∂2B2 + ∂3B3

)
= − (∂1B1 + ∂2B2 + ∂3B3) = 0, (1.36)

which indeed corresponds to equation (1.16).

The inhomogeneous Maxwell’s equations (1.15) and (1.14) can be written as

∂βF
αβ = Jα, (1.37)

for instance, if α = 0, we have from equations (1.29) and (1.37)

∂0F
00 + ∂1F

01 + ∂2F
02 + ∂3F

03 = ∂1E1 + ∂2E2 + ∂3E3 = ρ, (1.38)

which indeed agrees with equation (1.15).

Notice that the four Maxwell’s equations have been reduced to a set of two equations (1.35) and (1.37).
The continuity equation (1.18) was obtained from the inhomogeneous equations (1.15) and (1.14),
similarly, the continuity equation in covariant form can obtained from (1.37) by operating ∂µ on both
sides of equation (1.37). Thus,

∂αJ
α = ∂α∂βF

αβ = 0, (1.39)

since ∂α∂β is symmetric in α and β while Fαβ is antisymmetric in α and β. The expression (1.39) is
the conservation of electric charge whose underlying symmetry is gauge invariance.
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1.4 Gauge Transformation

Equations (1.21) and (1.23) show that A determines B, as well as part of E. Notice that B is left
invariant by the transformation

A −→ A
′

= A + ∇χ, (1.40)

for any arbitrary scalar function χ(x, t). But the theory of electricity and magnetism is a unified theory, so
the electric field E in equation (1.23) must be invariant as well though not with the same transformation
as the magnetic field B.

The invariance of E is accomplished by the transformation

Φ −→ Φ
′

= Φ− ∂χ

∂x0
. (1.41)

The transformations (1.40) and (1.41) are called gauge transformation, and the invariance of the fields
under such transformations is called gauge invariance [Jac62].

In the language of covariance, we see that four-potential Aα = (Φ,A) is not unique, the same electro-
magnetic field tensor Fαβ can be obtained from the potential

Aα =
(

Φ− ∂χ

∂x0
,A + ∇χ

)
. (1.42)

Substituting (1.42) into (1.28) we obtain

Fαβ = ∂αAβ + ∂α∂βχ− ∂βAα − ∂β∂αχ

= ∂αAβ − ∂βAα +
[
∂α, ∂β

]
χ

= ∂αAβ − ∂βAα,

using the fact that
[
∂α, ∂β

]
= 0.

The transformation Aα −→ A
′α = Aα + ∂αχ is a gauge transformation.



2. Vector Fields and Differential Forms

2.1 Vector Fields

This chapter is devoted to the basic concepts of vector fields and differential forms on manifolds. It
is assumed that the reader already knows about topological spaces, topological manifolds and smooth
manifolds. We are familiar with a vector v ∈ Rn as a coordinate of n-tuples (v1, . . . , vn), with n
components, vj . Given the standard basis e1, . . . , en, a vector v has a unique expansion,

v = vjej, (2.1)

where the n real numbers, vj , are the components of v with respect to the standard basis.

However, this picture is not visible on manifolds; how should one define a simultaneous basis vector, for
two vectors at different points on a sphere, for example? If these two vectors are thought of as little
arrows tangent to the sphere, they lie entirely in different planes, which makes defining basis vectors
and coordinates cumbersome. Thus, we demand a definition of vector fields that is independent of
coordinate choice. The trick of defining vector fields on manifolds is to note that given a field of arrows,
one can differentiate a function in the direction of the arrows, with the directional derivatives.

If v is a vector field and f is a function on Rn, the directional derivative of f in the direction of v is
defined by

v(f) : = Dv(f) = vj∂jf, (2.2)

where j = 1, 2, . . . , n. Since (2.2) is true for all f , we can extract f from both sides and write

v = vj∂j . (2.3)

The vector field v should not be identified with components vj but instead with the operator vj∂j .
Given a function f on a manifold; at each point of the manifold, we shall take a derivative of f in the
direction of v giving us a new function vj∂jf . That is, the combination of a vector field with a function
gives another function on a manifold, which is related to the derivative of the original function.

The space of all infinitely differentiable (smooth) functions on a manifold will be denoted by C∞(M)
and the set of all vectors on the manifold M will be denoted by F(M).

Definition 2.1.1. A vector field v on a manifold M is defined as a function from C∞(M) to C∞(M)
which satisfies the following axioms:

i. v(αf + βg) = αv(f) + βv(g) (Linearity)

ii. v(fg) = gv(f) + fv(g) (Leibniz law)

for all f, g ∈ C∞(M) and α, β ∈ R.

It is obvious from the above definition, that the vector fields are independent of the coordinate system
used.

Proposition 2.1.2. The vector fields {∂j} form a basis of F(Rn).
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Proof. Let πi : Rn → R, πi ∈ C∞(Rn). Suppose vj∂j = 0 then, the action on the coordinate
function πi gives vj∂jπ

i = vjδij = vi = 0 for each i ≤ n, where

∂jπ
i = δij =

{
1 if i = j,

0 if i 6= j.
(2.4)

Therefore the vector fields {∂j} are linearly independent. To show that they also form a basis, note that
for fixed x0, a first-order Taylor expansion yields

f(x) = f(x0) + ∂jf(x0) · (xj − xj0) + εx0 · ‖x− x0‖

where εx0(x) −→ 0 as x −→ x0.

Also v(α) = 0, where α is a constant,

because, v(α) = αv(1) = αv(1 · 1) = 2αv(1) = 2v(α).

Therefore,

v(f)(x0) = v(πj)(x0)∂jf(x0) + v(εx0)(x0) · ‖x0 − x0‖+ εx0(x0) · v(‖x0 − x0‖)
= v(πj)(x0)∂jf(x0).

Hence v = v(πj)∂j . This clearly shows that every vector field v ∈ Rn has a unique expansion as a
linear combination vj∂j , therefore the vector fields {∂j} form a basis of F(Rn).

2.1.1 Tangent Vectors

In calculus, we usually regard vectors as arrows characterized by their direction and length. In the same
spirit, it is good to think of a vector field on a manifold M as an arrow assigned to each point of M .
This kind of assignment of arrows is called a tangent vector field.

A concrete understanding of a tangent vector at p ∈M comes from the realization that a tangent vector
should allow us to take directional derivatives at the point p. For example, given a vector field v in an
open neighbourhood U of a point p ∈ M , we can take the directional derivative v(f) of any function
f ∈ C∞(M) and then evaluate the function v(f) at p ∈ M . In other words, the result v(f)(p) may
be interpreted as the differentiation of f in the direction of vp at the point p ∈M .

Definition 2.1.3. A tangent vector vp at a point p ∈ M is a linear map from the algebra of smooth
functions to the real numbers,

vp : C∞(M)→ R

such that the following properties are satisfied:

i. vp(αf + βg) = αvp(f) + βvp(g) (Linearity)

ii. vp(fg) = gvp(f) + fvp(g) (Leibniz law)

for all f, g ∈ C∞(M) and α, β ∈ R.

The collection of all tangent vectors at a point p ∈M is a tangent space at p and shall be denoted by
Tp(M). A vector field v ∈M determines tangent vector vp ∈ Tp(M) at each point p ∈M . Given two
tangent vectors vp,wp ∈ Tp(M) and a constant β ∈ R, we can define new tangent vectors at p by
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i. (vp + wp)(f) = vp(f) + wp(f)

ii. (βvp)(f) = β(vp)(f).

With this definition, it is evident that for each point p ∈M , the corresponding tangent space Tp(M) at
that point is a vector space. On the other hand, there is no natural way of adding two tangent vectors
vp ∈ Tp(M) and wq ∈ Tq(M) on a manifold at different points unless p and q are equal.

It can be shown that the tangent vectors {∂j |p} on Rn form a basis at Tp(Rn).

2.2 The Space of 1-Forms

The electric field, the magnetic field, the electromagnetic field on spacetime, the current — all these
are examples of differential forms. The gradient, the curl, and the divergence can all be thought of as
different aspects of single operator d that acts on the differential forms. The fundamental theorem of
calculus, Stoke’s theorem, and Gauss’ theorem are all special cases of a single theorem about differential
forms [BP94]. The concept of gradient of a function can be generalized to functions on arbitrary
manifold. Notice that the directional derivative of a function f on Rn (see (2.2) ) is simply

∇f · v = v(f), (2.5)

with the following properties

i. ∇f · (v + w) = ∇f · v + ∇f ·w

ii. ∇f · (gv) = g(∇f · v)

where g ∈ C∞(Rn) and v,w ∈ F(Rn).

On a manifold, there exists a function called df which is required to do the similar job as ∇f on any
manifold.

Definition 2.2.1. Let f : M → R be a real-valued C∞ function. We define the differential or 1-form
df of the function as a linear map df : F(M)→ C∞(M) defined by

df(v) = v(f),

for all v ∈ F(M).

Since df is a linear map, it has to satisfy the following properties

i. df(v + w) = (v + w)f = (v)f + (w)f = df(v) + df(w)

ii. df(gv) = gv(f) = gdf(v).

Let Ω1(M) represent the space of all 1-forms on a manifold M.

Definition 2.2.2. The exterior derivative of a function f is a linear map

d : C∞(M)→ Ω1(M),

that maps each function to its differential (1-form) df .
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Proposition 2.2.3. The exterior derivative of a function satisfies the following properties

i. d(αf + βg) = αdf + βdg

ii. d(fg) = gdf + fdg

for any f, g ∈ C∞(M) and any α, β ∈ R.

Proof. i. d(αf + βg)v = v(αf + βg) = αv(f) + βv(f) = αdf(v) + βdg(v)

ii. d(fg)v = v(fg) = gv(f) + fv(g) = gdf(v) + fdg(v).

One of the most perplexing ideas in calculus is that of differential. In the study of calculus the differential
of the dependent variable y = f(x) in terms of the differential of the independent variable is given by
dy = f

′
(x)dx. The major problem of this expression is the quantity dx. What does “dx” mean?

Physicists often think of dx as an infinitesimal change in position, a term introduced by Newton for an
idea that could not be expounded at that time. Differentials are being thought of as 1-forms.

We have seen that the vector fields {∂j} form a basis of F(Rn). Similarly, the 1-forms
{
dxi
}

form a
basis of Ω1(Rn) such that

dxi(∂j) = ∂jx
i = δij =

{
1 if i = j,

0 if i 6= j.
(2.6)

Proposition 2.2.4. The 1-forms
{
dxi
}

are linearly independent, that is, if

w = widx
i = 0,

then all the functions wi are zero, and form a basis of F(Rn).

Proof. If w = widx
i = 0,

then, by multiplying both sides by ∂j we have:

widx
i(∂j) = wi∂jx

i = wiδ
i
j = wj = 0.

Similarly, one can easily show from the proof of Proposition (2.1.2), that the 1-forms
{
dxi
}

form a
basis of F(Rn).

This clearly shows that any arbitrary 1-form w can be expanded as a linear combination

w = w1dx
1 + · · ·+ wndx

n, (2.7)

where the components wi are C∞ functions.

Proposition 2.2.5. Suppose f = f(x1, . . . , xn) is a smooth function on Rn, then the differential
(exterior derivative) df is given by the expression

df = ∂if dx
i.
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Proof.

df(v) = v(f) = vi∂if

= vjδji ∂if = vj∂ifdx
i(∂j)

= ∂ifdx
i(vj∂j) = ∂ifdx

i(v)

2.2.1 Cotangent Vectors

A vector field on a manifold leads to a tangent vector at each point p ∈ M , similarly, a 1-form on M
leads to a vector at each point called cotangent vector.

1-form fields assign to each point of a manifold an element of the dual tangent space. Differential
p-froms are defined pointwise as the exterior products of 1-forms fields [HO03].

Definition 2.2.6. A cotangent vector w at a point p ∈ M is a linear map from the tangent space
Tp(M) to the real number R

w : Tp(M)→ R.

Let T ∗p (M) denote the space of cotangent vectors at point p. The set of linear functionals (maps) on
a vector space is called the dual vector space. It can be shown from linear algebra, that the dual of a
vector space is also a vector space of the same dimension. Thus, the space T ∗p (M) of all 1-forms at
p ∈M is a vector space which is dual to the tangent space Tp(M).

On Rn, the set of differential forms
{
dxi|p

}
constitutes a basis of cotangent space which is dual to

basis {∂j |p} of the tangent space.

2.3 Change of Coordinates

We shall show how the components of a vector field transform upon a change of coordinates. The
reason why we have avoided coordinates in our definitions is that the world does not come equipped
with coordinates. Moreover, our brains cannot function without coordinates, they are what we impose
when we want to describe where things are. They are indispensable in many applications of physical
interest.

Unfortunately, different people might pick different coordinates, so it is advisable to know how the
components of a vector field or 1-form transform upon this change of coordinates. We shall first of all
describe how one can use coordinates locally on any manifold to work with vector fields and differential
forms. Given an n-dimensional manifold M , a chat is a diffeomorphism φ from an open set U of M to
Rn.

φ : U → Rn. (2.8)

In other words, we can turn calculations on U to calculations on Rn. The coordinates xj on U are
called the local coordinates of U , and any function on U can be written as f(x1, . . . , xn) of these local
coordinates.
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The coordinate vector fields ∂j that form a basis on Rn can be push forward by φ−1 to a basis of the
vector fields on U which can also be denoted by ∂j . These are called coordinate vector fields associated
with the local coordinates xj on U .

Thus, we can express any vector field v on U as

v = vj∂j . (2.9)

Similarly, the 1-forms dxj are a basis of 1-forms on Rn, which may be pulled back by φ to obtain a
basis of 1-forms on U . These are called the coordinate 1-forms associated with the local coordinates
xj , which are written as dxj .

Thus, we can express any 1-form ω on U as

ω = ωjdx
j . (2.10)

Given the coordinate functions
{
xj
}

on Rn with a basis {∂j} of F(Rn) and a vector field v ∈ Rn, one
can uniquely express this vector field as

v = vj∂j . (2.11)

Suppose there exist another coordinate functions
{
x
′k
}

on Rn such that
{
∂
′
k

}
form a basis of F(Rn).

Then the vector field can be expressed as

v = v
′k∂
′
k. (2.12)

The same vector is expressed in two ways, it follows that

v
′k∂
′
k = vj∂j , (2.13)

from chain rule of differentiation:

∂j =
∂

∂xj
=

∂

∂x′k
∂x
′k

∂xj
=
∂x
′k

∂xj
∂
′
k, (2.14)

equation (2.13) becomes

v
′k∂
′
k = vj∂j = vj

∂x
′k

∂xj
∂
′
k (2.15)

=⇒ v
′k =

∂x
′k

∂xj
vj . (2.16)

With this coordinate change, it follows that

D
′
v(f) = v

′k ∂f

∂x′k

= vj

(
∂x
′k

∂xj

)
∂f

∂x′k

= vj
∂f

∂xj
= Dv(f)
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These expressions hold for any manifold M since we can define a chart (diffeomorphism) in (2.8),
similarly, we can do the same transformation for 1-forms.

Thus, whenever we define something by use of local coordinates, if we wish the definition to have
intrinsic significance we must check that it has the same meaning in all coordinate systems [Fra97].
This emphasizes the point that the physical laws of nature must be the same in all coordinate systems
(generally covariant).

2.4 The Space of p-Forms

We shall now generalize 1-forms to p-forms on a manifold. Differential forms allows one to generalize
cross products to any number of dimensions. This kind of product is called wedge product or exterior
product and is denoted by ∧.

Suppose V is a real vector space, we know that the cross product of any two vectors in V is antisym-
metric, that is

v ×w = −w × v. (2.17)

Let ΛV be the exterior algebra over V . In other words, the wedge product of any number of vectors in
V belongs to ΛV . Therefore for all v, w ∈ V , we have

v ∧ w = −w ∧ v. (2.18)

In a general context, if V is an n-dimensional vector space, we define ΛpV to be the subspace of ΛV
which is spanned by the linear combination of the p-linear alternating fold product of vectors in V , that
is

v1 ∧ v2 ∧ · · · ∧ vp.

In particular,
Λ1V = V, (2.19)

and by convention
Λ0V = R. (2.20)

If p is bigger than n, the dimension of V , ΛpV is zero,

ΛpV = 0 for p > n, (2.21)

because any p-tuple of vectors (v1, . . . , vp) are linearly dependent. The direct sum of these subspaces
is given by

ΛV =
n⊕
p=0

ΛpV. (2.22)

Therefore, dim ΛpV=

(
n

p

)
and dim ΛV = 2n.

The generalization of the cross product of vector fields to the wedge (or exterior) products of 1-forms
(or cotangent vectors) on a manifold M comes from the replacement of the real numbers with smooth
functions C∞(M) on M and vector space V with the 1-forms Ω1(M). The space of differential forms
on M will be denoted by Ω(M) which is an algebra generated by Ω1(M), that is, they are comprised
of linear combinations of wedge products of 1-forms with functions as coefficients.
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Definition 2.4.1. The linear combinations of wedge products of p 1-forms are called p-forms and the

space of all p-forms on M denoted by Ωp(M) is a vector space of dimension

(
n

p

)
over the space of

smooth functions. Thus

Ω(M) =
n⊕
p=0

Ωp(M),

where n= dim M and Ω0(M) = C∞(M).

Suppose our manifold M is Rn, let
{
xi
}

be the coordinates on Rn with a basis
{
dxi
}

. We can express
w ∈ Ωp(Rn) as

w = wi1,··· ,ipdx
i1 ∧ · · · ∧ dxip , summed over 1 ≤ i1 < · · · < ip ≤ n (2.23)

or w =
1
p!
wi1,··· ,ipdx

i1 ∧ · · · ∧ dxip ; summed over all i′ps from 1 to n. (2.24)

Notice that the wedge operator is skew symmetric, that is,

dxi1 ∧ dxi2 = − dxi2 ∧ dxi1 (2.25)

dxi1 ∧ dxi1 = − dxi1 ∧ dxi1 = 0; (2.26)

also, the functions wi1,...,ip are assumed to be antisymmetric. Analytically speaking, differential forms
(p-form) are antisymmetric tensors; pictorially speaking, they are intersecting stacks of surfaces.

Proposition 2.4.2. For any manifold M , Ω(M) is graded commutative, that is, if ω ∈ Ωp(M) and
µ ∈ Ωq(M), then

ω ∧ µ = (−1)pqµ ∧ ω.

Proof. Let
{
xi
}

be the coordinate on some open subset U of M with a basis
{
dxi
}

, we can express
ω ∈ Ωp(M) and µ ∈ Ωq(M) as,

ω = ωi1,··· ,ipdx
i1 ∧ dxi2 ∧ · · · ∧ dxip

and
µ = µj1,··· ,jqdx

j1 ∧ dxj2 ∧ dxj3 ∧ · · · ∧ dxjq

ω ∧ µ = (ωi1,··· ,ipdx
i1 ∧ dxi2 ∧ · · · ∧ dxip) ∧ (µj1,··· ,jqdx

j1 ∧ dxj2 ∧ dxj3 ∧ · · · ∧ dxjq)

= (−1)pµj1,··· ,jqdx
j1 ∧ ωi1,··· ,ipdxi1 ∧ dxi2 ∧ · · · ∧ dxip ∧ dxj2 ∧ dxj3 ∧ · · · ∧ dxjq

= (−1)2pµj1,··· ,jqdx
j1 ∧ dxj2 ∧ wi1,··· ,ipdxi1 ∧ dxi2 ∧ · · · ∧ dxip ∧ dxj3 ∧ · · · ∧ dxjq

...

= (−1)pqµj1,··· ,jqdx
j1 ∧ dxj2 ∧ dxj3 ∧ · · · ∧ dxjq ∧ ωi1,··· ,ipdxi1 ∧ dxi2 ∧ · · · ∧ dxip

= (−1)pqµ ∧ ω.

Wedge product is much more powerful than cross product, in that it can be computed in any dimensions.
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2.5 Exterior Derivatives

Having defined the operator d : Ω0(M) → Ω1(M); f 7→ df that gives the differential of functions, we
shall now extend this to a map,

d : Ωp(M)→ Ωp+1(M), for all p (2.27)

which takes the derivative of a p-form to produce a (p + 1)-form. This operator turns out to have
marvellous algebraic properties that will generalize the gradient, curl and divergence of vectors.

Definition 2.5.1. The exterior derivative is the unique set of maps

d : Ωp(M)→ Ωp+1(M),

which satisfies the following properties:

i. d : Ω0(M)→ Ω1(M), is the ordinary derivative

ii. d(ω ∧ µ) = dω ∧ µ+ (−1)pω ∧ dµ, forµ ∈ Ωq(M) andω ∈ Ωp(M)

iii. d(αω + βµ) = αdω + βdµ for allω, µ ∈ Ωp(M) andα, β ∈ R

iv. d(dω) = 0 for allω ∈ Ωp(M).

These properties are easily proved but we shall skip them for convenience.

Definition 2.5.2. A form ω is closed if dω = 0. It is exact if ω = dφ for some φ (of degree one less
than ω).



3. The Metric and Star Operator

3.1 The Metric

In this chapter, we shall embark on the concept of a metric tensor and the Hodge star operator, as well
as the process of converting vector fields into 1-forms on a manifold.

A metric tensor introduces the length of a vector and an angle between every two vectors. The compo-
nents of the metric are defined by the values of the scalar products of the basis vectors [HO03].

Definition 3.1.1. A real vector space V is called a metric vector space if on V , a scalar product is
defined as a bilinear, symmetric, and non-degenerate map

g : V × V → R,

such that for all u, v, w ∈ V and λ ∈ R the following properties are satisfied:

(i) g(λu+ v, w) = λg(u,w) + g(v, w) (bilinear)

(ii) g(u, v) = g(v, u) (symmetric)

(iii) g(u, v) = 0 ∀u ∈ V iff v = 0 (non-degenerate).

If {eα} is the orthonormal basis in V , then,

g(eα, eβ) = gαβ = ±δαβ =

{
±1 ifα = β,

0 ifα 6= β.
(3.1)

The signature of the metric is identified by the number of +1′s and −1′s usually denoted by (p, q).
The idea of a metric can be extended to the space F(M) of all vector fields and the space Ω1(M) of all
1-forms on a manifold M . On a smooth manifold M , a metric g assigns to each point p ∈M a metric
gp on the tangent space TpM in a smooth varying way

gp : TpM × TpM → R,

which satisfies the above properties with λ replaced by f ∈ C∞(M), g(u, v) is a function on M whose
value at p is gp(up, vp), where u, v ∈ F(M) and up, vp ∈ Tp(M).

If the signature of g is (n, 0), n being the dimension of M , we say that g is a Riemannian metric, while
if g has the signature of (n− 1, 1), we say that g is Lorentzian. A manifold equipped with a metric will
be called a semi-Riemannian manifold denoted by (M, g).

Setting g̃(u)(v) = g(u, v), we obtain an isomorphism

g̃ : Tp(M)→ T ∗p (M), (3.2)

which can be proved by using the non-degeneracy property and the fact that dim Tp(M) =dim T ∗p (M).
Alternatively, we may write g̃(u) = g(u, ·).

Let {∂α} be a basis of a vector field on an open neighbourhood U of a point in M , then, the components
of the metric are given by

gαβ = g(∂α, ∂β). (3.3)

16
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If the dimension of M is n, then, gαβ is an n × n matrix. The non-degeneracy property shows that

gαβ is invertible, we shall denote the inverse by gαβ, also gαγg
αβ = δβγ . This leads to the raising and

lowering of indices which is a process of converting vector fields to 1-forms. With the help of (3.2), one
can easily convert between tangent vectors and cotangent vectors.

Example 3.1.2. If u = uα∂α is a vector field on a chart, then, the corresponding 1-form can be
calculated as follows:

g̃(u)(v) = g(u, v) = g(uα∂α, vβ∂β) = gαβu
αvβ

= gαγδ
γ
βu

αvβ = gαγu
αvβdxγ(∂β)

= (gαγuαdxγ) vβ∂β = (uγdxγ) v
=⇒ g̃(u) = uγdx

γ ,where gαγu
α = uγ .

Conversely, if ξ = ξβdx
β is a 1-form on a chart, then, the corresponding vector field can be calculated

as follows:

g̃−1(ξ)(η) = g−1(ξ, η) = g−1(ξβdxβ, ηγdxγ) = gβγξβηγ

= gβαδγαξβηγ = gβαξβηγdx
γ(∂α)

=
(
gβαξβ∂α

)
ηγdx

γ = (ξα∂α) η

=⇒ g̃−1(ξ) = ξα∂α,where gβαξβ = ξα.

In the general context,

Sn1···nk
l1···lj = gn1m1···nkmkSm1···mk,l1···lj , Sn1···nk

l1···lj = gl1m1···ljmk
Sn1···nk,m1···mj .

Using the fact that we can switch from 1-form to vector fields and vice versa with the help of a metric,
we define the inner product of two 1-forms ξ, η as

〈ξ, η〉 = gβγξβηγ . (3.4)

If θ1 ∧ · · · ∧ θp and σ1 ∧ · · · ∧ σp are orthonormal basis of p-forms, then,〈
θ1 ∧ · · · ∧ θp, σ1 ∧ · · · ∧ σp

〉
= det

[
g(θα, σβ)

]
, (3.5)

we define 〈
θα, θβ

〉
=

{
εβ = ±1, if α = β ,

0, if α 6= β .
(3.6)

Definition 3.1.3. Let M be an n-dimensional manifold, we define the volume form on a chat (Uα, φα)
as

Y = dx1 ∧ · · · ∧ dxn;

if the manifold is a semi-Riemannian manifold we have,

Y =
√
|det gαβ|dx1 ∧ · · · ∧ dxn.
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3.2 The Hodge Star Operator

The binomial coefficient
(
n
p

)
which represents the dimension of Ωp(M) is the number of ways of selecting

p(unordered) objects from a collection of n objects. It is evident that(
n

p

)
=
(

n

n− p

)
, (3.7)

which means that there are as many p-forms as (n− p)-forms. In other word, there should be a way of
converting p-forms to (n− p)-forms, for instance, 3-forms on 4-dimension can be converted to 1-forms
and vice versa. The operator that does this conversion is called the Hodge Star Operator.

Definition 3.2.1. The Hodge star operator is the unique linear map on a semi-Riemmanian manifold
from p-forms to (n− p)-forms defined by

? : Ωp(M)→ Ω(n−p)(M),

such that for all ξ, η ∈ Ωp(M),
ξ ∧ ?η = 〈ξ, η〉Y.

This is an isomorphism between p-forms and (n−p)-forms, and ?η is called the dual of η. Suppose that
dx1, · · · , dxn are positively oriented orthonormal basis of 1-forms on some chart (Uα, φα) on a manifold
M . In particular, Y = dx1 ∧ · · · ∧ dxn.

Let 1 ≤ i1 <, . . . , < ip ≤ n be an ordered distinct increasing indices and let j1 <, . . . , < jn−p be their
complement in the set {1, . . . , n}, then,

dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjn−p = sgn(I)dx1 ∧ · · · ∧ dxn, (3.8)

where, sgn(I) is the sign of the permutation i1 <, . . . , < ip in {1, . . . , n}. In other words, the wedge
products of p-forms and (n− p)-forms yield the volume form up to a sign.

We claim that

?
(
dxi1 ∧ · · · ∧ dxip

)
= sgn(I)εi1 · · · εipdxj1 ∧ · · · ∧ dxjn−p , (3.9)

where sgn(I)εi1 · · · εip = ±1.

One can easily verify that (3.9) satisfies the Definition (3.2.1) by setting ξ, η = dxi1 ∧ · · · ∧ dxip . Using
the result of Proposition (2.4.2) we obtain

dxj1 ∧ · · · ∧ dxjn−p ∧ dxi1 ∧ · · · ∧ dxip = (−1)p(n−p)dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjn−p

=⇒ sgn(J)dx1 ∧ · · · ∧ dxn = (−1)p(n−p)sgn(I)dx1 ∧ · · · ∧ dxn

=⇒ sgn(I)sgn(J) = (−1)p(n−p)sgn(I)sgn(I) = (−1)p(n−p),

since sgn(I)sgn(I) = 1, but sgn(I) is not always equal to sgn(J) which is the sign of the permutation
j1 < · · · < jn−p in {1, · · · , n}. Applying ? once more on (3.9), we obtain

? ?
(
dxi1 ∧ · · · ∧ dxip

)
= sgn(I)εi1 · · · εip ?

(
dxj1 ∧ · · · ∧ dxjn−p

)
. (3.10)
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Notice that the ? on the right hand side will take us from (n−p)-forms to n− (n−p)-forms = p-forms,
therefore we have,

? ?
(
dxi1 ∧ · · · ∧ dxip

)
= sgn(I)εi1 · · · εipsgn(J)εj1 · · · εjn−p

(
dxi1 ∧ · · · ∧ dxip

)
= sgn(I)sgn(J)

n∏
k=1

εk
(
dxi1 ∧ · · · ∧ dxip

)
=⇒ ?2 = (−1)p(n−p)+s

where
n∏
k=1

εk = (−1)s and s is the signature of the metric.

The signature of the metric s = 0 for Riemannian manifold and s = 1 for Lorentzian manifold, thus,

?2 =

{
(−1)p(n−p) for Riemannian manifold

(−1)p(n−p)+1 for Lorentzian manifold .
(3.11)

We could rewrite (3.9) by introducing the totally antisymmetric Levi-Civita permutation symbol defined
by

εi1,...,ip =


+1 if (i1, . . . , ip) is an even permutation of (1, . . . , n),
−1 if (i1, . . . , ip) is an odd permutation of (1, . . . , n),
0 otherwise.

(3.12)

The Levi-Civita symbol of all the indices up is equal to the permutation with all the indices down on
Riemannian manifold,

εi1,...,ip = εi1,...,ip , (3.13)

since the Riemannian metric which is positive definite is used to raise or lower indices. However, this
is not the case in Minkowski (Lorentzian manifold) 4-dimensional spacetime where index raising and
lowering is done with Minkowski metric ηµν . Thus, in Minkowski 4-dimensional spacetime

εi0i1i2i3 = −εi0i1i2i3 , (ε0123 = 1), (3.14)

since η00 = −1 (by the convention we have chosen in (1.3)) . The indices i0, i1, i2, i3 are any of the
integers 0, 1, 2, 3. The important thing to note is that raising or lowering the index 0 introduces a
negative sign.

Using (3.12) we obtain

? (dxi1 ∧ · · · ∧ dxip) =
1

(n− p)!
εi1···ip j1···jn−pdx

j1 ∧ · · · ∧ dxjn−p . (3.15)

Example 3.2.2. Suppose dx1, dx2, dx3 are a basis of 1-forms on some chart (Uα, φα) on 3-dimensional
Riemannain manifold. Then, using (3.12) and (3.15) we obtain

?dx1 =
1
2!
ε1j1j2dx

j1 ∧ dxj2

=
1
2

(ε123dx
2 ∧ dx3 + ε132dx

3 ∧ dx2)

= ε123dx
2 ∧ dx3 = dx2 ∧ dx3

?dx2 =
1
2
ε2j1j2dx

j1 ∧ dxj2 = −dx1 ∧ dx3

?dx3 =
1
2
ε3j1j2dx

j1 ∧ dxj2 = dx1 ∧ dx2


(3.16)
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conversely,

?(dx2 ∧ dx3) =
1
1!
ε23
1 dx

1 = dx1

?(−dx1 ∧ dx3) = − 1
1!
ε13
2 dx

2 = dx2

?(dx1 ∧ dx2) =
1
1!
ε12
3 dx

3 = dx3.


(3.17)

In fact, a close look at the first set of equations shows that they are related to

i = j× k, j = −i× k, k = i× j,

if 1 is a 0-form or function. Then,

?1 =
1
3!
εj1j2j3dx

j1 ∧ dxj2 ∧ dxj3 = dx1 ∧ dx2 ∧ dx3, conversely ? (dx1 ∧ dx2 ∧ dx3) =
1
0!
ε123 = 1.

It follows that

?2 = 1 (3.18)

Let dx0, dx1, dx2, dx3 be a basis of 1-forms on some chart (Uα, φα) on 4-dimensional Minkowski space-
time then,

?
(
dx1 ∧ dx0

)
=

1
2!
ε10
j1j2dx

j1 ∧ dxj2

=
1
2
(
ε10
23dx

2 ∧ dx3 + ε10
32dx

3 ∧ dx2
)

=
1
2
(
−ε1023dx

2 ∧ dx3 − ε1032dx
3 ∧ dx2

)
= ε0123dx

2 ∧ dx3 = dx2 ∧ dx3

?
(
dx2 ∧ dx0

)
=

1
2!
ε20
j1j2dx

j1 ∧ dxj2 = ε0123dx
3 ∧ dx1

= dx3 ∧ dx1

?
(
dx3 ∧ dx0

)
=

1
2!
ε30
j1j2dx

j1 ∧ dxj2 = ε0123dx
1 ∧ dx2

= dx1 ∧ dx2



(3.19)

conversely,

?(dx2 ∧ dx3) =
1
2!
ε23
j1j2dx

0 ∧ dx1 = −ε0123dx
1 ∧ dx0

= −dx1 ∧ dx0

?(dx3 ∧ dx1) =
1
2!
ε31
j1j2dx

j1 ∧ dxj2 = ε3120dx
2 ∧ dx0

= −dx2 ∧ dx0,

?
(
dx1 ∧ dx2

)
=

1
2!
ε12
j1j2dx

j1 ∧ dxj2 = −dx3 ∧ dx0.


(3.20)

Notice something interesting in the above example, in 4-dimensional Minkowski spacetime, the dual
(Hodge star operator) of a 2-form is also a 2-form that is,

? : Ω2(M)→ Ω2(M), with ?2 = −1. (3.21)
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The dual of a 3-form in 4-dimensional Minkowski space-time is given by

?(dx1 ∧ dx2 ∧ dx3) = ε123
0 dx0 = ε1230dx

0 = −dx0

?(dx0 ∧ dx1 ∧ dx3) = ε013
2 dx2 = −ε0132dx

2 = dx2

?(dx0 ∧ dx2 ∧ dx3) = ε023
1 dx1 = −ε0231dx

1 = −dx1

?(dx0 ∧ dx1 ∧ dx2) = ε012
3 dx3 = −ε0123dx

2 = −dx3

 (3.22)

conversely,

?dx0 =
1
3!
ε0j1j2j3dx

j1 ∧ dxj2 ∧ dxj3 = −ε0123dx
1 ∧ dx2 ∧ dx3 = −dx1 ∧ dx2 ∧ dx3

?dx1 =
1
3!
ε1j1j2j3dx

j1 ∧ dxj2 ∧ dxj3 = ε1023dx
0 ∧ dx2 ∧ dx3 = −dx0 ∧ dx2 ∧ dx3

?dx2 =
1
3!
ε2j1j2j3dx

j1 ∧ dxj2 ∧ dxj3 = ε2013dx
0 ∧ dx1 ∧ dx3 = dx0 ∧ dx1 ∧ dx3

?dx3 =
1
3!
ε3j1j2j3dx

0 ∧ dx1 ∧ dx2 = ε3012dx
0 ∧ dx1 ∧ dx2 = −dx0 ∧ dx1 ∧ dx2.


(3.23)

The Exterior derivative and Hodge star operator on R3 yield the known classical operators, curl, diver-
gence and gradient of vectors, as we now show.

Suppose f is a 0-form on R3. Then

df = ∂1fdx
1 + ∂2fdx

2 + ∂3fdx
3, (3.24)

if the coordinates are Cartesian, then the components are the components of the gradient of f . Thus,

df = ∇f · dx. (3.25)

Let A = A1dx
1 +A2dx

2 +A3dx
3 be a 1-form on R3. Then,

dA = ∂2A1dx
2 ∧ dx1 + ∂3A1dx

3 ∧ dx1 + ∂1A2dx
1 ∧ dx2

= ∂3A2dx
3 ∧ dx2 + ∂1A3dx

1 ∧ dx3 + ∂2A3dx
2 ∧ dx3

= (∂1A2 − ∂2A1)dx1 ∧ dx2 + (∂1A3 − ∂3A1)dx1 ∧ dx3 + (∂2A3 − ∂3A2)dx2 ∧ dx3

?dA = (∂2A3 − ∂3A2)dx1 − (∂1A3 − ∂3A1)dx2 + (∂1A2 − ∂2A1)dx3,

 (3.26)

if the components are Cartesian, then the components are that of the curl a vector A. That is

?dA = (∇×A) · dx. (3.27)

Notice that
?A = A1dx

2 ∧ dx3 +A2dx
3 ∧ dx1 +A3dx

1 ∧ dx2

d ? A = (∂1A1 + ∂2A2 + ∂3A3)dx1 ∧ dx2 ∧ dx3

?d ? A = ∂1A1 + ∂2A2 + ∂3A3 = ∇ ·A in Cartesian coordinate.

 (3.28)

Also, d(df) = 0 corresponds to ∇× (∇f) = 0 and d(dA) = 0 corresponds to ∇ · (∇×A) =0.



4. Differential Form of Maxwell’s Equations

4.1 The Homogeneous Maxwell’s Equations

Having developed the mathematical language of differential forms, we hereby apply it to Maxwell’s
equations. First, consider the homogeneous Maxwell’s equations (1.16) and (1.17), notice that in the
language of differential forms, the divergence of a vector has been shown to be the exterior derivative
of a 2-form on R3 ( see (3.28)). The curl of a vector has also been shown to be the exterior derivative
of 1-form on R3 (see (3.26) and (3.27)). Thus, instead of treating the magnetic field as a vector
B = (B1, B2, B3) we will treat it as a 2-form

B = B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1 +B3dx
1 ∧ dx2. (4.1)

Similarly, instead of treating the electric field as a vector E = (E1, E2, E3), we will treat it as a 1-form

E = E1dx
1 + E2dx

2 + E3dx
3. (4.2)

Next we shall consider the electric and magnetic fields as the inhabitants of spacetime and assume that
the manifold M to be a semi-Riemannian manifold equipped with the Minkowski metric, in other words,
as a 4-dimensional Lorentzian manifold or spacetime. Furthermore, we shall assume that the spacetime
M can be split into a 3-dimensional manifold S, ’space’, with a Riemannian metric and another space
R for time. Then,

M = R× S.

Let xi (i = 1, 2, 3) denote local coordinates on an open subset U ⊆ S, and let x0 denote the coordinate
on R, then the local coordinates on R×U ⊆M will be those given in (1.1) with the metric defined by
(1.3).

We can then combine the electric and magnetic fields into a unified electromagnetic field F , which is a
2-form on R× U ⊆M defined by

F = B + E ∧ dx0. (4.3)

In component form we have

F =
1
2
Fαβdx

α ∧ dxβ (4.4)

where Fαβ is given by (1.34).

Explicitly, we have

F = E1dx
1 ∧ dx0 + E2dx

2 ∧ dx0 + E3dx
3 ∧ dx0

+B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1 +B3dx
1 ∧ dx2.

(4.5)

Taking the exterior derivative of (4.3) we obtain

dF = d(B + E ∧ dx0) = dB + dE ∧ dx0. (4.6)

In general, for any differential form η on spacetime, we have

η = ηIdx
I , (4.7)
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where I ranges over {i1, . . . , ip} and ηI is a function of spacetime.

Taking the exterior derivative of (4.7), we obtain

dη = ∂1ηIdx
1 ∧ dxI + ∂2ηIdx

2 ∧ dxI + ∂2ηIdx
3 ∧ dxI + ∂0ηIdx

0 ∧ dxI

= ∂iηIdx
i ∧ dxI + ∂0ηIdx

0 ∧ dxI , i = 1, 2, 3

= dsη + dx0 ∧ ∂0η

=⇒ d = ds + dx0 ∧ ∂0,

where ds is the exterior derivative of space and (x0 = t).

Since B and E are differential forms on a spacetime, we shall split the exterior derivative into spacelike
part and timelike part. Using the identity above, we obtain the following from (4.6)

dF = dsB + dx0 ∧ ∂0B + (dsE + dx0 ∧ ∂0E) ∧ dx0

= dsB + (dsE + ∂0B) ∧ dx0 + dx0 ∧ dx0 ∧ ∂0E

= dsB + (dsE + ∂0B) ∧ dx0.

Now, dF = 0 is the same as

dsB = 0 (4.8)

dsE + ∂0B = 0. (4.9)

The equations (4.8) and (4.9) are exactly the same as (1.16) and (1.17).

In order to be fully convinced that this is true, let’s do the calculation explicitly in component form.

Taking the exterior derivative of F in (4.5), we obtain:

dF = ∂2E1dx
2 ∧ dx1 ∧ dx0 + ∂3E1dx

3 ∧ dx1 ∧ dx0 + ∂1E2dx
1 ∧ dx2 ∧ dx0

+ ∂3E2dx
3 ∧ dx2 ∧ dx0 + ∂1E3dx

1 ∧ dx3 ∧ dx0 + ∂2E3dx
2 ∧ dx3 ∧ dx0

+ ∂1B1dx
1 ∧ dx2 ∧ dx3 + ∂0B1dx

0 ∧ dx2 ∧ dx3 + ∂2B2dx
2 ∧ dx3 ∧ dx1

+ ∂0B2dx
0 ∧ dx3 ∧ dx1 + ∂3B3dx

3 ∧ dx1 ∧ dx2 + ∂0B3dx
0 ∧ dx1 ∧ dx2,

collecting terms and using the antisymmetric property of wedge product, we obtain

dF = (∂1B1 + ∂2B2 + ∂3B3)dx1 ∧ dx2 ∧ dx3

(∂2E3 − ∂3E2 + ∂0B1)dx0 ∧ dx2 ∧ dx3

(∂3E1 − ∂1E3 + ∂0B2)dx0 ∧ dx3 ∧ dx1

(∂1E2 − ∂2E1 + ∂0B3)dx0 ∧ dx1 ∧ dx2.

Note that dF = 0 is the same as

∂1B1 + ∂2B2 + ∂3B3 = 0 (4.10)

∂2E3 − ∂3E2 + ∂0B1 = 0
∂3E1 − ∂1E3 + ∂0B2 = 0
∂1E2 − ∂2E1 + ∂0B3 = 0

 . (4.11)

The equations (4.10) and (4.11) are exactly the same as (1.16) and (1.17). Hence, the homogeneous
Maxwell’s equations correspond to the closed form dF = 0 which is similar to the Jacobi identities
(1.35).
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4.2 The Inhomogeneous Maxwell’s Equations

Notice that in the old-fashioned formulation of Maxwell’s equations (see (1.15) — (1.17)), the homo-
geneous and the inhomogeneous versions are somehow related by reversing the role of E and B. In the
language of differential forms, this reversal relationship will lead to treating E as a 2-form and B as a
1-form.

Interestingly, the Hodge star operator does this work efficiently since one can easily convert a 1-form in
3-dimensional space to a 2-form and vice versa. Starting from (4.5) and using the results established in
(3.19) and (3.20), we obtain:

?F = −B1dx
1 ∧ dx0 −B2dx

2 ∧ dx0 −B3dx
3 ∧ dx0

+ E1dx
2 ∧ dx3 + E2dx

3 ∧ dx1 + E3dx
1 ∧ dx2,

(4.12)

or

? F =
1
2

(?F )αβdxα ∧ dxβ (4.13)

where

(?F )αβ =


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

 . (4.14)

A close look at (4.5) and (4.12) shows that the effect of the dual operator on F amounts to the exchange

Ei 7→ −Bi and Bi 7→ Ei, i = 1, 2, 3

in (1.34).

This is the main difference between the homogeneous and the inhomogeneous Maxwell’s equations.
Another difference is that the inhomogeneous version contains ρ and J. In the language of differential
forms, we shall use the fact that the metric allows us to convert a vector field into a 1-form. Combining
the charge density ρ and current density J into a unified vector field on Minkowski spacetime, we obtain

J = Jα∂α = ρ∂0 + J1∂1 + J2∂2 + J3∂3. (4.15)

Using the result of Example (3.1.2), with Minkowski metric (1.3), we obtain the 1-form

J = Jβdx
β = J1dx1 + J2dx2 + J3dx3 − ρdx0, (4.16)

where
Jβ = ηαβJ

α. (4.17)

Let ?s denote the Hodge star operator on space, using (3.17) we can easily see that (4.12) is the same
as

? F = ?sE − ?sB ∧ dx0 (4.18)

which amounts to the exchange

E 7→ − ?s B and B 7→ ?sE,

in (4.3), taking the exterior derivative of (4.18), we obtain
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d ? F = ds ?s E + ∂0 ?s E ∧ dx0 − ds ?s B ∧ dx0. (4.19)

Applying the Hodge star operator, we obtain

? d ? F = − ?s ds ?s E ∧ dx0 − ∂0E + ?sds ?s B, (4.20)

if we set ?d ? F = J and equate components, we obtain

?sds ?s E = ρ

−∂0E + ?sds ?s B = J idxi

}
, i = 1, 2, 3 (4.21)

which is exactly the inhomogeneous Maxwell’s equations as can be shown explicitly by taking the exterior
derivative of (4.12),

d ? F = −∂2B1dx
2 ∧ dx1 ∧ dx0 − ∂3B1dx

3 ∧ dx1 ∧ dx0 − ∂1B2dx
1 ∧ dx2 ∧ dx0

− ∂3B2dx
3 ∧ dx2 ∧ dx0 − ∂2B3dx

2 ∧ dx3 ∧ dx0 − ∂1B3dx
1 ∧ dx3 ∧ dx0

+ ∂0E1dx
0 ∧ dx2 ∧ dx3 + ∂1E1dx

1 ∧ dx2 ∧ dx3 + ∂0E2dx
0 ∧ dx3 ∧ dx1

+ ∂2E2dx
2 ∧ dx3 ∧ dx1 + ∂0E3dx

0 ∧ dx1 ∧ dx2 + ∂3E3dx
3 ∧ dx1 ∧ dx2.

Collecting terms, we obtain

d ? F = (∂1E1 + ∂2E2 + ∂3E3)dx1 ∧ dx2 ∧ dx3

+ (∂3B2 − ∂2B3 + ∂0E1) dx0 ∧ dx2 ∧ dx3

(∂3B1 − ∂1B3 − ∂0E2) dx0 ∧ dx1 ∧ dx3

(∂2B1 − ∂1B2 + ∂0E3) dx0 ∧ dx1 ∧ dx2

 . (4.22)

Taking the dual of (4.22) and using the result of (3.22), we obtain

?d ? F = − (∂1E1 + ∂2E2 + ∂3E3) dx0 + (∂2B3 − ∂3B2 − ∂0E1)dx1

+ (∂3B1 − ∂1B3 − ∂0E2) dx2 + (∂1B2 − ∂2B1 − ∂0E3)dx3
(4.23)

Now, ?d ? F = J corresponds to
∂1E1 + ∂2E2 + ∂3E3 = ρ (4.24)

∂2B3 − ∂3B2 − ∂0E1 = J1

∂3B1 − ∂1B3 − ∂0E2 = J2

∂1B2 − ∂2B1 − ∂0E3 = J3

 . (4.25)

Notice that (4.24) and (4.25) are exactly the same as (1.15) and (1.14) also, ?d ? F = J is similar to
(1.37). Thus, the newfangled Maxwell’s equations correspond to

dF = 0
?d ? F = J

The continuity equation in covariant form (1.39) was derived from (1.37), in a similar way the continuity
equation in differential form will be derived from ?d ? F = J .
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Taking the dual of both sides, we obtain,

?2d ? F = ?J (4.26)

=⇒ ± d ? F = ?J. (4.27)

The sign in (4.27) depends on the value of ?2 in (3.11) for Lorentzian manifold, but in this case ?2 = 1
since d ? F is a 3-form, therefore

d ? F = ?J. (4.28)

Taking the exterior derivative of both sides in (4.28) and using property (iv) in Definition (2.5.1), we
obtain

d ? J = dd ? F = 0, (4.29)

which is the differential form of (1.39), as we will now show.

Taking the star of both sides of (4.16) and using the result of (3.23), we obtain,

?J = ρdx1 ∧ dx2 ∧ dx3 − J1dx0 ∧ dx2 ∧ dx3

+ J2dx0 ∧ dx1 ∧ dx3 − J3dx0 ∧ dx1 ∧ dx2.
(4.30)

Operating the exterior derivative on (4.30), we obtain,

d ? J = ∂0ρ dx
0 ∧ dx1 ∧ dx2 ∧ dx3 − ∂1J

1dx1 ∧ dx0 ∧ dx2 ∧ dx3

+ ∂2J
2dx2 ∧ dx0 ∧ dx1 ∧ dx3 − ∂3J

3dx3 ∧ dx0 ∧ dx1 ∧ dx2.
(4.31)

Using the property of wedge product, we obtain,

d ? J = (∂0ρ+ ∂1J
1 + ∂2J

2 + ∂3J
3)dx0 ∧ dx1 ∧ dx2 ∧ dx3. (4.32)

Therefore d ? J = 0 corresponds to

∂0ρ+ ∂1J
1 + ∂2J

2 + ∂3J
3 = 0, (4.33)

which is exactly the continuity equation (1.18). This shows that the differential forms of Maxwell’s
equations are exactly the same as the covariant forms when expressed in terms of components.

4.3 The Vacuum Maxwell’s Equations

In free space (vacuum), Maxwell’s equations, in the old-fashioned formulation, correspond to ρ,J = 0,
which can be identified in the modern language of differential form as

dF = 0, (4.34)

and
d ? F = 0 (J = 0), (4.35)

which amounts to the exchange
F 7→ ?F.
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We say that F ∈ Ω2(M) is self-dual if ?F = F , and anti-self-dual if ?F = −F . In 3-dimensional
Riemannian manifold, it was shown that ?2 = 1. This implies that the Hodge star operator has
eigenvalues of ? = ±1, therefore, we can consider any F ∈ Ω2(M) as a sum of self-dual and anti-self-
dual:

F = F+ + F−, where, ?F± = ±F±, (4.36)

which can be easily shown by taking F± = 1
2 (F ± ?F ).

However, in the Lorentzian case ?2 = −1, which implies that the eigenvalues are ±i. If we consider
complex-valued differential forms on M , it follows that, for any F ∈ Ω2(M), we have,

F = F+ + F−, where, ?F± = ±iF±. (4.37)

In both cases, if F is a self-dual or an anti-self-dual 2-form satisfying (4.34), automatically it satisfies
(4.35). Certainly, F is complex-valued in the Lorentzian case but we can always split the real and
imaginary part and obtain a real solution using the fact that Maxwell’s equations are linear. Thus, the
four vacuum Maxwell’s equations correspond to either (4.34) or (4.35) in the language of differential
forms.

4.4 Conclusion

Interestingly, Maxwell’s equations have been drastically reduced into a language of differential geometry.
These four sets of equations which perfectly describe the theory of electromagnetism have been reduced
to a set of two equations which lay the foundations of most new theories in the physical world today.

The most revolutionary quantum leap in the history of theoretical physics is the birth of general relativity
and quantum field theory (the standard model of elementary particle). These theories describe nature
better than any physicist ever had at hand, although they have not been unified into a coherent picture
of the world. One of the main ingredients of these theories is differential geometry. Euclidean geometry
was abandoned in favour of differential geometry and classical field theories had to be quantized.

Maxwell’s equations in the language of differential geometry lead to a generalization to these new
theories, and these equations are a special case of Yang-Mills equations (beyond the scope of this
essay), which is also gauge invariant and describe not only electromagnetism but also the strong and
weak nuclear forces. This essay is nothing but the tip of the iceberg.
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